Number of modes per unit volume of the cavity per unit frequency interval is given by:

\[N_\nu = \frac{8\pi\nu^2}{c^3} \quad \cdots \quad (3.1) \]

Therefore, energy density (per unit freq. interval);

\[U_\nu = \frac{8\pi\nu^3}{c^3} \frac{1}{e^{\frac{\nu}{kT}} - 1} \quad \cdots \quad (3.2) \quad \text{Unit of energy density: J/m}^3 \]

Plotting \(U_\nu \) against \(\nu \);

Eqn. 3.2 is important to derive Einstein Coefficients.

Einstein Coefficients

- Excited atom in free space has a lifetime of about \(10^{-8} \) s.
- Equivalent to the average number of \(10^8 \).
- Spontaneous transition from an excited state \(\rightarrow \) lower state per second.
- **Transition Probability** : The larger the transition rate, the greater the probability of transition.

Probability of spontaneous emission is called **Einstein A Coefficient**.

\[A_{21} = \frac{1}{t_{21}} \quad \cdots \quad (3.3) \]

Definition: Is the probability per unit time per atom that the excited atom will decay spontaneously to the lower state.
For \(\text{N}_2 \) atom \(\rightarrow \text{N}_2 \text{A} \) transitions per unit time.

Einstein B Coefficients

Eg: \(B_{12} \) and \(B_{21} \)

\[B_{12} = \text{is the absorption coefficient.} \]
\[= \text{is the probability per atom per unit time per unit radiation density per unit frequency interval that absorption from (1) \(\rightarrow \) (2).} \]

Suppose that 2-level atoms are in an enclosure (a box), energy density (in the freq \(\nu \) to \(\nu + d\nu \)) = \(\rho(\nu)d\nu \). Then, probability per unit time that an atom will absorb a photon and be excited \((1) \rightarrow (2) \).

So, the stimulated absorption per atom per unit time = \(B_{12} \rho(\nu) \)

for \(\text{N}_1 \) atoms = \(\text{N}_1 B_{12} \rho(\nu_{12}) \) \[\text{[transition per unit time per unit freq interval]} \]

Einstein \(B_{21} \) (for stimulated emission)

\(B_{12} \rightarrow \text{The probability per atom per second per unit radiation energy density per unit frequency interval.} \)

For \(\text{N}_2 \) atoms, (per unit volume):

Transitions from \((2) \rightarrow (1) = \text{N}_2 B_{21} \rho(\nu_{12}) \)
Relationship between A and B coefficients.

Consider the case where the system is in thermal equilibrium.

⇒ Total energy of the system must remain constant (no. of photons absorbed per second must be equal to the total no. emitted, stimulated and spontaneous)

Thus; \[\frac{N_1 B_{12}}{\text{absorption}} \rho(v) = \frac{N_2 A_{21}}{\text{spontaneous}} + \frac{N_2 B_{21}}{\text{stimulated}} \rho(v) \](3.4)

Solving for \(\rho(v) \),

\[\rho(v) = \frac{N_2 A_{21}}{N_1 B_{12} - N_2 B_{21}} \](3.5)

From Boltzmann distribution, at thermal equilibrium,

\[\frac{N_1}{N_2} = e^{-\frac{h \nu}{kT}} \](3.6)

Substitute (3.6) into (3.5),

\[\rho(v) = \frac{A_{21}}{(e^\frac{h \nu}{kT})B_{12} - B_{21}} \](3.7)

Note: This radiation density \(\rho(v) \) emitted at thermal equilibrium for 2-level system has to be identical to blackbody radiation density (Planck Law) given as;

\[U_\nu = \frac{8\pi h \nu^3}{c^3} \frac{1}{e^{\frac{h \nu}{kT}} - 1} \](3.8)

Therefore, for them to be equal between (3.7) & (3.8), these relationship must hold,

\[B_{12} = B_{21} \approx B \](3.9)

\[\frac{A_{21}}{B} = \frac{8\pi h \nu^3}{c^3} \](3.10)
Note:

(3.9) shows that the probability of stimulated emission is equal to the probability of stimulated absorption.

(3.10) Ratio \(R \) of the rate of spontaneous emission to the rate of stimulated emission under thermal equilibrium.

\[R = \frac{A_{21}}{\rho(\nu)B} \]

Using (3.7) into above,

\[R = e^{\frac{hv}{kT}} - 1 \quad \ldots \ldots (3.11) \]

Substitute \(\nu = 5 \times 10^{14} \text{ Hz} \rightarrow \text{Green light.} \)

\[R \approx 10^{-35} \left(\frac{\text{spon tan eous}}{\text{stimulated}} \right) \]

At thermal equilibrium, it is quite impossible to get the stimulated emission in visible region. But, for microwave…

\(\nu = 10^9 \text{ Hz} \quad R = 0.001 \)

Stimulated emission is dominant process, directionality in a microwave.

For lasing action, in visible region the population has to be inverted \(\rightarrow \) “population inversion” or negative temperature.

Why negative temperature?

\[\frac{N_2}{N_1} = e^{-\frac{hv}{kT}} \quad \text{to make } N_2 > N_1, \text{ the term } \frac{hv}{kT} \text{ has to be positive, therefore} \]

this is possible when \(T \rightarrow (-T) \) so that; \(\frac{-hv}{k(-T)} \Rightarrow \frac{hv}{kT} \)
Population inversion; a situation whereby the system is no longer in thermal equilibrium and stimulated emission of visible light becomes possible.

4.0 Threshold Condition.

→ the **minimum** population difference $N_2 - N_1$ needed to sustain laser action.

A laser consists of an amplifying medium (that is being inverted) in the form of gas, liquid and solid placed between two mirrors.

Losses process in an optical resonator:

(i) Transmission, absorption and scattering by mirrors

(ii) Absorption within the amplifying medium due to other energy levels.

$$h\nu = E_5 - E_3$$
(iii) Scattering by optical inhomogeneities within the amplifying medium is important in solid-state lasers (impossible to produce perfect crystals)

(iv) Diffraction losses by the mirrors.

All this losses can be included in a parameter, t_{photon}.

t_{photon}: lifetime of a photon existing within the laser cavity.

Deriving the threshold condition - for lasing action.

2-level system:

\[
\begin{array}{c}
\rho(\nu) \\
\downarrow \\
\downarrow \\
E_1 \\
\hbar \nu \\
E_2
\end{array}
\]

Stimulated Emission rate per atom in state 2;

\[
W' = \rho(\nu)B = \frac{IB}{c} \quad \text{from;} \quad I(\nu) = \rho(\nu)c
\]

\((J/s)/cm^2 \quad J/cm^3.cm/s\)

From (3.10)

\[
W' = \frac{c^2I}{8\pi\hbar\nu^3}A \quad \text{(4.1)}
\]

A = the probability per unit time of a spontaneous emission

\[A = \frac{1}{t_{21}} \quad (\text{related to the lifetime of the upper laser level})\]

\[
W' = \frac{c^2I}{8\pi\hbar\nu^3t_{21}} = \frac{\lambda^2I}{8\pi\hbar\nu t_{21}} = \frac{c^3\rho(\nu)}{8\pi\hbar\nu^3t_{21}} \quad \text{(4.2)}
\]

W’ = transition rate per atom.

\[\Rightarrow \text{For } N_2 \text{ atoms;} \quad W'N_2 = \frac{N_2c^2I}{8\pi\hbar\nu^3t_{21}} \quad \text{(4.3)}\]
Total absorption rate (for \(N_1 \) atoms in ground state);

\[
W'N_1 = \frac{N_1 c^2 I}{8\pi h \nu^3 t_{21}} \quad \text{(because } B_{12} = B_{21} = B \text{)}
\]

Consider the medium below;

Rate of change of intensity with time = \(\frac{dI}{dt} \)

= difference between stimulated emission and absorption rates.

i.e. = change of energy density per unit time \(xc \).

Or,

\[
\frac{dI}{dt} = h\nu[N_2 - N_1]\frac{c^2 I}{8\pi h \nu^3 t_{21}} - c \quad \text{.........(4.4)}
\]

For absorption,

\[
\begin{align*}
\left[\frac{d\rho}{dt} \right] &= h\nu[N_2 - N_1]\frac{c^3 \rho(\nu)}{8\pi h \nu^3 t_{21}} \\
\frac{1}{c} \frac{dI}{dt} &= h\nu[N_2 - N_1]\frac{c^2 I/c}{8\pi h \nu^3 t_{21}}
\end{align*}
\]

If \(N_1 > N_2 \) (thermal equilibrium); \(\frac{dI}{dt} \) or \(\frac{dI}{dx} \) are negative.

⇒ As a result of \((N_2 - N_1)\) is negative.