1. Calculate the plasma pressure, root mean square velocity, most probable velocity, Debye length, number of particles in the Debye sphere and the plasma frequency of the following plasmas \((n \text{ cm}^{-3}, kT \text{ eV}) \):

(a) Fusion Plasma : \(n = 10^{15}, kT = 10,000 \)
(b) Glow discharge : \(n = 10^9, kT = 2 \)
(c) Flame : \(n = 10^8, kT = 0.1 \)
(d) Interplanetary space : \(n = 1, kT = 0.01 \)

2. In a certain Townsend discharge the primary cathode emission is 20 pA and the first Townsend coefficient has the value of 1.5 cm\(^{-1}\). If the electrodes are 4 cm apart and secondary effect is negligible, find the discharge current.

3. The following measurements were obtained from a Townsend discharge with constant electric field:

<table>
<thead>
<tr>
<th>Electrode spacing, (d) (mm)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge current (I) (10^{-12}) A</td>
<td>6.4</td>
<td>8.2</td>
<td>10.5</td>
<td>13.5</td>
<td>22.5</td>
<td>38.5</td>
<td>68.7</td>
<td>134</td>
</tr>
</tbody>
</table>

Estimate the First Townsend Coefficient \(\alpha\) and then the Second Coefficient \(\gamma\).

4. With reference to the Paschen curve below,

![Paschen curve](image)

if a discharge at \(p = 0.1\) torr, \(d = 20\) cm is to be initiated, what is the voltage required to caused a breakdown?

What will be the breakdown voltage if \(p = 0.025\) torr, \(d = 20\) cm?
5. Plot the graphs of $\frac{\alpha}{p}$ against $\sqrt{\frac{p}{E} \times 1000}$ for argon and helium at pressure of $p = 1$ torr.